Design of Fuzzy Logic Controllers with Genetic Algorithms through Artificial Neural Networks for Controls

نویسندگان

  • Deepak Choudhary
  • Rakesh Kumar
  • Umesh Sehgal
چکیده

This paper focuses on the Genetic Algorithm learning paradigm applied to train the ANNs for balancing the cart-pole balancing system. The studied system is a control problem namely “cart-pole” problem. We will apply the unconventional techniques Artificial Neural Network, Genetic Algorithm and Fuzzy Logic to a classic control problem “cart-pole”. In this paper we have tried to train the Artificial Neural Network (ANN) with using Genetic Algorithms (program is written in MATLAB) which is compared with the output obtained using the Artificial Neural Network Toolbox provided in MATLAB. In proposed approach we have used both ANNs and Genetic Algorithm to get more optimal solution. Here we applied the approach for the Fuzzy logic technique to design a Fuzzy Logic Controllers (FLC) using ANNs and Genetic Algorithm (GA). The Fuzzy rules which are needed to control the problem will be framed with the combination of Artificial Neural Networks and Genetic Algorithm. It has been found that such a searching technique converges intelligently and much faster than conventional learning means. Performance of the presented neural network training using the genetic algorithms is much better and providing more accurate results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic algorithm design of neural network and fuzzy logic controllers

This paper discusses the design of neural network and fuzzy logic controllers using genetic algorithms, for real-time control of flows in sewerage networks. The soft controllers operate in a critical control range, with a simple set-point strategy governing "easy" cases. The genetic algorithm designs controllers and set-points by repeated application of a simulator. A comparison between neural ...

متن کامل

Artificial Intelligence Representations of Multi-Model Based Controllers

This paper develops a representation of multi-model based controllers by using artificial intelligence typical structures. These structures will be neural networks, genetic algorithms and fuzzy logic. The interpretation of multimodel controllers in an artificial intelligence frame will allow the application of each specific technique to the design of multimodel based controllers. A method for s...

متن کامل

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

بهبود عملکرد سامانه‏های کنترل از طریق شبکه با استفاده از چرخش در قوانین کنترلگر منطق فازی

This paper addresses a novel control method adapted with varying time delay to improve NCS performance. A well-known challenge with NCSs is the stochastic time delay. Conventional controllers such as PID type controllers which are just tuned with a constant time delay could not be a solution for these systems. Fuzzy logic controllers due to their nonlinear characteristic which is compatible wit...

متن کامل

Optimal Control Algorithms for Second Order Systems

Proportional Integral Derivative (PID) controllers are widely used in industrial processes for their simplicity and robustness. The main application problems are the tuning of PID parameters to obtain good settling time, rise time and overshoot. The challenge is to improve the timing parameters to achieve optimal control performances. Remarkable findings are obtained through the use of Artifici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013